The Lebanese Republic
Ministry of Energy and Water
Directorate General of Oil
The General Director

No: 40/T Beirut: 29/6/2022

To Whom It May Concerns

Knowing that the estimated yearly quantities of fossil fuels needed for Electricite Du Liban (EDL) simulations for (8-10) hours of electricity supply to the local consumers are as follows:

Petroleum Product	Yearly Quantity (Metric Tons)				
Gas Oil	1,250,000.00				
HFO Quality Grade (B)	400,000.00				
HFO Quality Grade (A)	180,000.00				
TOTAL:	1,840,000.00				

- And in order to assess the feasibility of the opportunity for the international petroleum companies and Institutions to supply the Ministry of Energy and Water with the above mentioned petroleum products of the enclosed specifications for EDL needs, we ask any interested party to provide us with the following informations:
 - The pricing terms such as the name of the Platts quotation, period for pricing (number of Platts quotations around Bill of Lading date), discount on the Platts, premium discount,...
 - The terms of payment such as deferred payment at a certain number of days from bill of lading date,...
 - The quickest period to send us your reply about the delivery of the mentioned petroleum products.
 - o Any other needed information.

• And given the critical situation of the electricity sector in Lebanon, we ask the interested party to acknowledge receipt and send us a quick response in this regard.

Director General of Oil

Engineer Aurore Feghaly

Enclosure: - Specifications of Gas Oil

- Specifications of HFO Quality Grade (B)

- Specifications of HFO Quality Grade (A)

L

كهرباء لبنان

"مؤسسة عامة"

ELECTRICITE DU LIBAN

"Etablissement Public"

= = 1/9/V

جانب المديرية العامة للنفط فاكس: ١/٢٨٠٧٠١ شارع النهر ـ بيروت ـ تلفون : ۲۹ ـ ۲۷۲۰ ـ ۱- ۲۹۲۱ فاکس : ۸۳۰۸ ا ۱- ۹۳ ـ ۹۳ ـ ۱- ۱۲۴ و ب ص.ب. ۱۳۱۱ رقم المحفوظات: رقم الصادر: کے ماکمی بیروت فی ۲۰۲۱/۰۰/

الموضوع: ملاحظات حول المواصفات الفنية لمادة الغاز أويل موضوع استدراج العروض الفوري رقم T/ ١١١ تاريخ ٢٠٢١/٠٤/٢٩.

J

لمراجع : - كتاب المديرية العامة للنفط الى مؤسسة كهرباء لبنان تاريخ ١٠٢١/٥٥/١ .

بالإشارة الى الموضوع والمرجع أعلاه،

وعطفاً على كتاب المديرية العامة لإدارة المناقصات رقم ١٠/٤٢ تاريخ ٢٠٢١/٠٥/١ (مستند رقم ١)، بأن الخبير الأوروبي يوصي من حيث المبدأ بأخذ رأي الشركة الصانعة في طريقة الاختبار ASTMD381، وأن هذا الأمر يقرر بالنهاية بالاتفاق ما بين مؤسسة كهرباء لبنان والشركة الصانعة، وهو خارج عن اختصاص إدارة المناقصات،

وعطفاً على كتابكم تاريخ ٢٠٢١/٠٥/١١ (مستند رقم ٢)، وبعد الاطلاع على كتب الشركات المرفقة بكتابكم ودرس الملاحظات، نفيدكم بالتالي:

أولاً: بالنسبة لملاحظات شركة "ZR Energy DMCC" وفق كتابها رقم 70408-42-MEW-PT0802 تاريخ النسبة لملاحظات شركة "70408-42-MEW-PT0802" وفق كتابها رقم 7): ٢٠٢١٠٥٠٤ (مستند رقم ٣):

Gum Content: Can you please clarify if what is meant is "washed gums" or "unwashed gums"? Please confirm the correct testing method that is applicable for gasoil not jet fuel. The notes also mention "washed and unwashed" – does this actually mean "washed or unwashed"?

Answer: The value 7mg/100 mL is for both washed and unwashed Gum content. We confirm that the applicable test method is ASTM D381 as per Siemens request. As for the notes, it is "washed and unwashed".

- Heat of Combustion: This test method (ASTM D4809) is not industry standard. We suggest using ASTM D4868 which is industry standard.

(8 = K CK. 8. 1 4

Answer: This is the applicable test method (ASTM D4809) as per the manufacturer Company Siemens' Manual. Knowing that, this method was applied for testing the "LHV" of Gas oil sample from the last two cargos by the certified laboratory Bureau Veritas — Dubai contracted by the General Directorate of Oil.

1.1

- Sediment particulates: We would like to point out that the test methods applicable are not suitable. The standard test method relevant for gasoil is ASTM D6217 or IP415. Testing method of DIN 51419 is obsolete and was cancelled in 1983. We suggest you remove all test methods that are not ASTM 6217 + IP415.
 - Answer: All these test methods are according to Siemens Manual, which are applied by the certified laboratory Bureau Veritas Dubai, contracted by the General Directorate of Oil, for testing the Sediment particulates in the Gas oil sample from the last two cargos.
- Sediment particulates: The particulates size specified is "d<10μm, 10≤d≤25 μm, d>25 μm" which are unknown parameters and seem to look for the sizes of particles, rather than overall quantity. These methods are designed for determination of total quantity of contamination particles and do not imply to calculate their quantity depending on size of each particle as is requested in the spec. If it is necessary to count the particles according to their diameters, then the suggested method is ASTM D7619.
 - Answer: This test method is according to Siemens Manual, which is applied by the certified laboratory Bureau Veritas Dubai, contracted by the General Directorate of Oil, for testing the Sediment particulates in the Gas oil sample from the last two cargos.
- Acid number: The Unit need to be corrected mg KOH/g instead of mg/g KOH.
 Answer: The correct unit for acid number is mg/g KOH as per Siemens Manual.
- <u>Chlorine:</u> The test method requested is not suitable. The methods to be used are IP510 or UOP779.
 - Answer: The method D4929 / ISO15597 for testing "Cl" is requested by the manufacturer Company Siemens.

- Notes for evaluation: This section is extremely unclear. We request further clarifications on this section.

Answer: Kindly specify the exact points that are not clear in the evaluation.

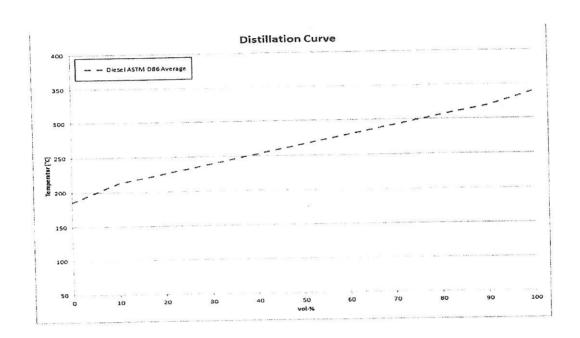
ثانياً: بالنسبة لملاحظة شركة "Independent Petroleum Group Limited" وفق كتابها تاريخ ٢٠٢١/٠٥/٠٤ (مستند رقم ٤):

- Requesting a waiver in the Gum which will make us in a better position to participate in your tender for subject requirement.
 - Answer: The Gum Content is requested by the Manufacturer company Siemens. knowing that the additional set of parameters marked as "Ranges as per Siemens Experience" will be evaluated if the Gum Content (washed and/or unwashed) are outside the specified range 7mg/100mL, where two Gas oil cargos were evaluated and approved according to these additional parameters.

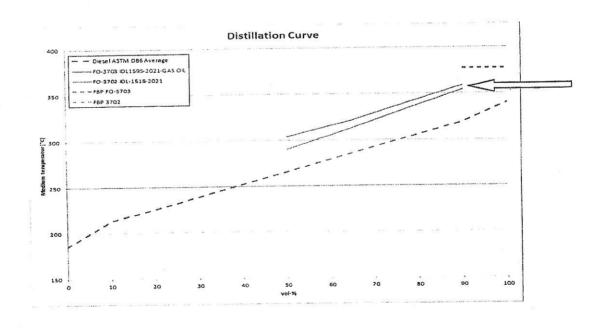
ثالثًا: بالنسبة لملاحظات شركة "ELINOIL Hellenic Petroleum Company" وفق كتابها تاريخ (مستند رقم ٥):

- Given that Gasoil should be tested for Gums under ASTM381 if <u>unwashed</u> and, if anyway if it is tested, the method cannot produce a result of less than 7mg/100mL (<u>unwashed</u>), we presume that the second set of parameters marked as "Ranges as per Siemens Experience", will always be applicable.

Answer: Correct, if the unwashed Gum Content exceeds 7mg/100mL.


- We are still reviewing the relative values for C, H, and O.

Answer: Noted.


J 1 1 1 1

- Regarding distillation, we have noticed that the rejection criteria are totally vague. In ASTMD86, there is no reference boiling curve. Therefore, we don't understand where the requested specification refers to. Furthermore, the notion of a "strong deviation" is totally subjective and open to wide interpretation. Could you please specify what stands for strong deviation? We would strongly recommend that you revise the specification to indicate min/max values for the distillation, as per the diesel specification for example.

Answer: Kindly find below the reference boiling curve according to ASTM D86, where the requested curve shall be parallel to this reference curve, taking into consideration that there is already a max limit for the 90 % volume of Distillation which is set to 365 °C.

As an example, kindly find below the distillation curves for two Gas oil Cargos that were evaluated accordingly and accepted in the last couple of months.

رابعاً: بالنسبة لملاحظات مختبر "Bureau Veritas" - دبي وفق البريد الالكتروني تاريخ ٢٠٢١/٠٥/٠٩ (مستند رقم ٦):

- Recommends splitting the Gum content test into two lines, for the unwashed and washed, while stating the conditions at which the test was performed at, such as temperature and time.

4

Parameters	Tont Marks of		Limits as po	er Siemens Manual	
	Test Method	Unit	Min	Max	For Evaluatio
Total Sulfur (S)	ASTM D3246/D5453/ ISO6326	Mass %		0.2	
Fuel Bound Nitrogen (FBN)	ASTM D4629	Mass %		0.015	1
Lower Heating Value (LHV)	ASTM D4809/DIN51900	MJ/kg	42		-
Density (at 15°C)	ASTM D1298/DIN51757	kg/m3	820	870	1
Kinematic Viscosity (at 40°C)	ASTM D445/ISO-3104/DIN51562-1	mm2/s(cSt)	1.3	5.5	
Distillation, 90 % volume recovered @ °C max	ASTM D86/ISO3405	°C		365	Thes
Carbon Residue	ASTM D4530/ISO10370/DIN51551	Mass %		0.15	se p
Oxidation Stability	ASTM D2274/IP365/95	mg/100ml		2.5	1 11
Sediment & Water	ASTM D2709	Vol %		0.1	l B
sediment Particulates		mg/kg		20	ete
d<10µm	ASTM D6217/IP415/DIN51419/DIN EN	5000 5000		18	TS S
10≤d≤25μm	12662			2	ha
d≥25µm				0	
Water	ASTM D95	Vol %		0.05	e e
Sediment		Mana 04		0.03	va va
	ASTM D473/ISO3737/DIN51789//DIN EN 12662	Mass %		0.01	These parameters shall be evaluated in all conditions
Gum Content (Unwashed)	ASTM D381	mg/100ml		7	=
Pour Point (9PP)	ASTM D97/ISO3016	°C		0	2
Flashpoint (9FP)	ASTM D93/D56/ISO2719	°C	60		le
Acid Number	ASTM D664	mg/g KOH		0.1	onc
Ash content	ASTM D482/ISO6245/DIN51575/DIN EN 2645	Mass %		0.01	litio
Na + K	ASTM D3605 / DIN 51790	mg/kg		0.5	DS .
V	ASTM D3605 / DIN 51790	mg/kg		0.5	
Pb	ASTM D3605 / DIN 51790	mg/kg		1	
Ca	ASTM D3605 / DIN 51790	mg/kg		1	
CI	ASTM D4929/ISO15597	mg/kg		6	
Parameters	Test Method	Unit	Ranges as per	Siemens Experience	
Carbon (C)	D5291 / DIN 51721	% Mass	85	- 87.5	
Hydrogen (H)	D5291 / DIN 51721	% Mass		- 14.5	The
Oxygen (O)	D5291 / DIN 51721	% Mass		<0.2	
Distillation range				is Gon Curve	e par n con
50 % evaporated					se parameters shall be evaluated m content value (washed and/or unwashed > 7mg/100mL)
55 % evaporated	D86 / ISO 3405	°C	1-		s shall lue (w >7mg
90 % evaporated (Defined above)					hall be evaluated e (washed and/or 7mg/100mL)
End point			* the measured distillation and shape parallel to the a curve (according to ASTA		nluated and/o

* * * *

^{*} If Gum content (washed and/or un-washed) > 7mg/100mL, and all the parameters (with limits as per siemens manual) and all the remaining parameters (with ranges as per Siemens Experience) comply with the above mentioned limits and ranges, then the gas oil sample complies with the required

Note for Evaluation:

* If Gum content (washed and un-washed) ≤ 7mg/100mL and all the parameters (with limits as per Siemens manual) comply with the above mentioned limits, then the gas oil sample complies with the required specifications.

Answer: Siemens has already clarified to Bureau Veritas during the online meeting held on 29/03/2021 that the performed modifications to ASTM D381 by BV are plausible and this depends on the core know how of the laboratory itself, and this was mentioned in Siemens letter dated 02/04/2021 as follows:

"As stated in the meeting from 29th of March 2021 and the customer letter (dated 30.3.2021) the performed modifications are plausible. Necessary modifications to **ASTM D381** depending on fuel quality and sample are core know how of the individual laboratories."

كما نفيدكم باننا سنقوم بمراسلة مختبر Bureau Veritas – دبي والشركة الصانعة Siemens لمراجعة ملاحظات شركة ZR Energy من قبل مختبر ملاحظات شركة ZR Energy من قبل مختبر -Bureau Veritas دبى دون تدوين أي اعتراض،

استناداً الى ما ورد أعلاه، تجدون ربطاً جدول المواصفات المطلوبة للغاز أويل حيث تم توضيح طريقة تقييم الـ Distillation range، مع وضع رسم بياني كمرجع لاعتماده لدى تقييم نتيجة فحص هذا المكون.

كما تجدر الإشارة الى أن مختبر Bureau Veritas - دبي قد أجرى جميع الفحوصات الأساسية والإضافية المذكورة في الجدول المرفق على عينتي الغاز أويل المأخوذتين من الباخرتين Histira Perla و Antares خلال الشهر بن الماضيين حيث تم قبول تفريخ الباخرتين على أساسها،

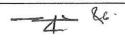
وبالتالي، نتمنى عليكم إطلاق مناقصة تأمين شحنة الغاز أويل فوراً وبالسرعة القصوى وفق ما ورد أعلاه واستناداً الى جدول المواصفات الموضّح المرفق، وعطفاً على كتاب مؤسسة كهرباء لبنان رقم ٢٠١٦ تاريخ ٢٠٢١/٠٥/١

وتفضلوا بقبول فائق الاحترام.

ب ع - رع مر الع - طرق - ب س الله الع - خ ح .

رئيس مجلس الإدارة المدير العام

كمال الحايك


نسخة إلى: - معالى وزير الطاقة والمياه

1	All parameters must be filled	by the Gas	oil supplier				
Parameters	Test Method	Unit	Limits as per	For Evaluation			
Faidilleteis	rest wethou	Oint	Min	Max	FOR EVALUATION		
Total Sulfur (S)	ASTM D3246/D5453/ ISO6326	Mass %		0.2			
Fuel Bound Nitrogen (FBN)	ASTM D4629	Mass %		0.015			
Lower Heating Value (LHV)	ASTM D4809/DIN51900	MJ/kg	42				
Density (at 15°C)	ASTM D1298/DIN51757	kg/m3	820	870			
Kinematic Viscosity (at 40°C)	ASTM D445/ISO-3104/DIN51562-1	mm2/s(cSt)	1.3	5.5	ب		
Distillation, 90 % volume recovered @ °C max	ASTM D86/ISO3405	"M D86/ISO3405 °C 36:					
Carbon Residue	ASTM D4530/ISO10370/DIN51551	Mass %		0.15	e pa		
Oxidation Stability	ASTM D2274/IP365/95	mg/100ml		2.5	raı		
Sediment & Water	ASTM D2709	Vol %		0.1	nei		
sediment Particulates		mg/kg		20	ter		
d<10µm	ASTM D6217/IP415/DIN51419/DIN			18	S		
10≤d≤25μm	EN 12662			2	hal		
d≥25µm				0	d II		
Water	ASTM D95	Vol %			ie e		
	, to this Boo	V 01 70		0.05	ya		
Sediment	ASTM D473/ISO3737/DIN51789//DIN EN 12662	Mass %		0.01	These parameters shall be evaluated in all conditions		
Gum Content	ASTM D381	mg/100ml		7	E.		
Pour Point (9PP)	ASTM D97/ISO3016	°C		0	all		
Flashpoint (9FP)	ASTM D93/D56/ISO2719	°C	60		co		
Acid Number	ASTM D664	mg/g KOH		0.1	nd		
Ash content	ASTM D482/ISO6245/DIN51575/DIN EN 2645	Mass %		0.01	ition		
Na + K	ASTM D3605 / DIN 51790	mg/kg		0.5	S		
V	ASTM D3605 / DIN 51790	mg/kg		0.5			
Pb	ASTM D3605 / DIN 51790	mg/kg		1			
Са	ASTM D3605 / DIN 51790	mg/kg		1			
CI	ASTM D4929/ISO15597	mg/kg		6			
Parameters	Test Method	Unit	Ranges as per S	iemens Experience			
Carbon (C)	D5291 / DIN 51721	% Mass	85	- 87.5			
Hydrogen (H)	D5291 / DIN 51721	% Mass	11	- 14.5	Th		
Oxygen (O)	D5291 / DIN 51721	% Mass	 	<0.2	hese Gum		
Distillation range 50 % evaporated			should show a slop	the evaluated curve be and shape parallel	hese parameters sh Gum content value unwashed > 7		
65 % evaporated	D86 / ISO 3405	°C	to this reference, i strong deviations temperature indica potential for formit combustion, which	ers shall be evalu value (washed and > 7mg/100mL)			
End point			- strong deviations	to lower nitial boiling points volatile fuel	parameters shall be evaluated if content value (washed and/or unwashed > 7mg/100mL)		
Cold filter Plugging point (CFPP)	D637/EN116	°C	Fuel temperatur	re > 10 °C + CFPP	r lif		

Note for Evaluation:

^{*} If Gum content (washed and/or un-washed) > 7mg/100mL, and all the parameters (with limits as per siemens manual) and all the remaining parameters (with ranges as per Siemens Experience) comply with the above mentioned limits and ranges, then the gas oil sample complies with the required specifications.

^{*} If Gum content (washed and un-washed) ≤ 7mg/100mL and all the parameters (with limits as per Siemens manual) comply with the above mentioned limits, then the gas oil sample complies with the required specifications.

A design of the second of the		f
< -	6	do
	~1	de
		E &
R		5
		3
	1	

S.N° S.N° 20 20 21 21 22 22 22 24		
1 129		
Parameters Bromine Number Ratio of Asphaltene content / Conradson Carbon Residue P-Value Heptane Insoluble Cleanliness rating Paraffin Wax content	OTENATION MACE	を表示している。 は、 は、 は、 は、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に
Units g Br/100g (mass/mass)% (mass/mass)% Hno thouldbe supply Hno t		
Units Specifications Test	(GAWIONS FOR HIKO PARATITE	
Units Specifications ' Test Methods g Br/100g <12 ASTM D 189 (OR ASTM D 1159 <p>- 0.66 ASTM D 189 (OR ASTM D 1159) (mass/mass)% min: 0.5 and max: 30 ASTM D 189 (OR ASTM D4530)/IP 143 > 1.5 ASTM D 189 (OR ASTM D4530)/IP 143 > 1.5 ASTM D 189 (OR ASTM D4530)/IP 143 (mass/mass)% min: 0.5 and max: 30 ASTM D4740 (mass/mass)% Conin: 0.5 and max: 30 ASTM D4740 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 ASTM D 189 (OR ASTM D4530)/IP 143 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 ASTM D 189 (OR ASTM D4530)/IP 143 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 ASTM D 189 (OR ASTM D4530)/IP 143 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 ASTM D 189 (OR ASTM D4530)/IP 143 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 ASTM D 189 (OR ASTM D4530)/IP 143 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 ASTM D 189 (OR ASTM D4530)/IP 143 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 ASTM D 189 (OR ASTM D4530)/IP 143 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 ASTM D 189 (OR ASTM D4530)/IP 143 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 ASTM D 189 (OR ASTM D4530)/IP 143 - <3 ASTM D 189 (OR ASTM D4530)/IP 143 ASTM D 189 (OR ASTM D 1159 ASTM D 189 (OR AS</p>		

1000 D

57-77

100000000

		18 8	\perp			15		14			5 =	10	9	000	T-	1 6	5	4	<u></u>	2 12) m	S.N.S	
الم المعتدر		Sediments and Water	Heat of Combustion	nydrogen sulfide		used lubricating oils (ULO): Calcium and zinc, or calcium and phosphorus		acid number	Sultur	Tlash point	pour point	Water	CCAI	Vanadium ^a	Ash	Sodium *	aluminum + silicon	Micro carbon residue	density at 15°C	Viscosity at 50°C	Total Sediment Content b	186	
T G		% VOI	MJ/kg Gross	mg/kg		mg/kg		mgKOH/g	% m/m	රී	റ്	%V/V		mg/kg	% m/ m	mg/kg	mg/kg	% m/m	kg/m³	mm²/s	(mass/mass)%	Units	TANA MARKANIA
At to Se of the	<1	17.	>41	8	* calcium > 30 and zinc > 15 or * calcium > 30 and phosphorus > 15	considered to cointain ULO, when either of the following conditions is met:	the fuel should be free from 1110	<2.5	< <u>-</u>	> 60	< 30	< 0.5	< 870	< 350 < 350	<01	× 1000	0.9.5		< 901	< 380 < 380	< 0.10%	Specifications	
	ASTM D 1796:1997	ASTM D 4868:2000				IP501 I	ASTM D664						IP501	ASTM D482	IP501	IP501	D4530	ASTM D4052	ASTM D445	IP 390	Methods	BiHH20) Equivalent Test	The Late of the La
			IP 570			IP 501 or IP 470 . IP 500		ISO 8754, ISO 14596	ISO 2719	ISO 3016	ISO 3733	see 6.3 a)	IP 501, IP 470 or ISO 14597	ISO 6245	IP 501, IP 470	IP 501, IP 470 or ISO 10478	ISO 10370	ISO 3675 or ISO 12185	ISO 3104	ISO 10307-2	ISO 8217-2017		
图 0003	THE REAL PROPERTY.	Material Services	-	-	None and the second			SO-	EDF-	[47.1	000	779		×	1			N.Micaluesus	S. China	

HEAVY FUEL OIL PARAMETERS FOR GRADE A HFO

	Parameters	Specified	Rejected	Test Method
1	Density Kg/L at 15 °C		> 0.991	ASTM D 1298:1999 OR ASTM D 4052:1996
2	KINEMATIC VISCOSITY AT 50 DEG C (MM2/s)	165	>240 <92	ASTM D 445:1997
3	FLASH POINT pensky martins closed cup ⁰ C		<66	ASTM D 93:2002
4	SULFUR CONTENT % MASS		>1	ASTM D 129:2000 OR ASTM D 4294:2002
5	SEDIMENT PCT MASS		>0.2	ASTM D 473:2002
6	WATER & SEDIMENTS PCT VOL	1	>1.5	ASTM D 1796:1997
7	ASH CONTENT PCT MASS	0.12	>0.15	ASTM D 482:2000
8	SODIUM CONTENT PPM	40	>45	ASTM D 5863:2000
9	VANDIUM CONTENT PPM	110	>135	ASTM D 5863:2000
10	POUR POINT ⁰ C		>30	ASTM D 97:1996
11	ASPHALTENES PCT MASS	3	>5	IP 143
12	HEAT OF COMBUSTION MJ/kg Gross		<41	ASTM D 4868:2000
13	CARBON RESIDUE PCT WT		>18	ASTM D 524:2000

